\qquad

Write each equation in vertex form. Then, identify the vertex, direction of opening, and the max or min value.
1.) $y=x^{2}+16 x+71$
2.) $y=x^{2}-2 x-5$
3.) $y=x^{2}-12 x+46$
4.) $y=x^{2}-6 x+5$
5.) $y=x^{2}+10 x+33$
6.) $y=x^{2}+6 x+7$
7.) $y=x^{2}+4 x$
8.) $y=-x^{2}-14 x-59$
9.) $y=2 x^{2}+36 x+170$
10.) $y=4 x^{2}+64 x+156$
\qquad DATE \qquad PERIOD \qquad
11.) A certain sock company's annual profit (in millions of dollars) as a function of the price per pair of socks (in dollars) can be modeled by the following equation.

$$
y=-3(x-5)^{2}+25
$$

What price should the company sell its socks for to maximize profit? \qquad
What is the maximum profit they will receive? \qquad
12.) Drew is standing on a balcony and throws a football to his friend on ground level. The path of the football can be modeled by the equation,

$$
h(x)=-(x-2)^{2}+16
$$

Where the height of the ball is represented in meters, x seconds after being thrown. What is the height of the ball at the time it is thrown? \qquad

What is the maximum height of the ball? \qquad
How long does it take for the ball to reach the maximum height? \qquad
13.) The graph of g is a vertical shrink by a factor of $\frac{1}{4}$, has a reflection in the x-axis (opens down), moves right 5 and down 4 of the graph of $f(x)=x^{2}$. Write the function for $g(x)$.
14.) How does the graph of $h(x)=3(x+2)^{2}-5$ compare to the graph of $f(x)=x^{2}$.
15.) Write the equation of a parabola whose a value is -4 and has a vertex at $(9,10)$.

